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Adaptive Text Denoising Network for Image Caption Editing
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CHANGSHENG XU, Peng Cheng Laboratory; University of Chinese Academy of Sciences; NLPR, Institute
of Automation, CAS, China

Image caption editing, which aims at editing the inaccurate descriptions of the images, is an interdisciplinary
task of computer vision and natural language processing. As the task requires encoding the image and its
corresponding inaccurate caption simultaneously and decoding to generate an accurate image caption, the
encoder-decoder framework is widely adopted for image caption editing. However, existing methods mostly
focus on the decoder, yet ignore a big challenge on the encoder: the semantic inconsistency between image
and caption. To this end, we propose a novel Adaptive Text Denoising Network (ATD-Net) to filter out noises
at word level and improve the model’s robustness at sentence level. Specifically, at the word level, we design a
cross-attention mechanism called Textual Attention Mechanism (TAM), to differentiate the misdescriptive
words. The TAM is designed to encode the inaccurate caption word by word based on the content of both image
and caption. At the sentence level, in order to minimize the influence of misdescriptive words on the semantic
of an entire caption, we introduce Bidirectional Encoder to extract the correct semantic representation from
the raw caption. The Bidirectional Encoder is able to model the global semantics of the raw caption, which
enhances the robustness of the framework. We extensively evaluate our proposals on the MS-COCO image
captioning dataset and prove the effectiveness of our method when compared with the state-of-the-arts.

Additional Key Words and Phrases: Image caption editing, Sequence editing, Cross-modal semantic matching.
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1 INTRODUCTION
Image caption, which aims to bridge the gap between visual and language modalities, is an interdis-
ciplinary task of computer vision (CV) and natural language processing (NLP). Beyond traditional
image caption task, image caption editing aims to correct the inaccurate descriptions of the images,
as illustrated in Fig. 1. This task plays a crucial role in many complex applications, such as removing
misdescriptive words in image captioning datasets and content-based image retrieval [7, 9, 53, 56].
However, it also imposes higher requirements for the precise alignment between the modalities of
visual and language.
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Fig. 1. Two examples of inaccurate captions versus accurate captions on corresponding images. The words in
red are misdescriptive words and the words in blue are correct ones. In the first example, the task of image
caption editing needs to edit the word “chair” to “table”. In the second example, the task of image caption
editing requires editing the word “standing” to “laying” and “table” to “couch”.

Fig. 2. For a given image and a raw caption, the encoder of ATD-Net first uses Textual Attention Mechanism
(TAM) and Bidirectional Encoder to process the raw caption under the guidance of the image features
extracted by Faster-RCNN. Subsequently, the decoder generates an accurate caption with the help of feature
vectors from both the image and the raw caption.

In recent years, methods based on encoder-decoder architecture have achieved initial success
in image caption editing [6, 7]. At one end, Convolutional Neural Network (CNN) [1, 2] and
Long Short-Term Memory (LSTM) [7] are commonly used to encode the input images and the
corresponding inaccurate captions into fixed-size feature vectors. While at the other end, LSTM
or Transformer [13] are applied to decode the encoded feature vectors into a sequence of words.
Based on this framework, Fawaz and Mahmoud [6] separately encode raw caption and image with
the proposed Deep Averaging Network (DAN) and CNN, then utilize the gate function of LSTM to
simultaneously decode two-mode representations to generate a new caption. Fawaz and Mahmoud
[7] propose an editing network in the decoder, which generates each word by selecting the LSTM
cell state corresponding to the most relevant words.

However, the text noises caused by semantic inconsistency between image and caption will affect
both encoder and decoder. If the raw caption and misdescriptive words are encoded into sentence
features and word features, it will induce error accumulation in the training process. For example,
the misdescriptive words “chair” “standing" and “table” in Fig. 1 will cause inconsistent semantic
representations of the entire sentence encoding. Moreover, existing models treat all words in the
raw caption equally which leads to two major problems: First, since the entire sentence is usually
encoded as a whole, it is difficult to locate and edit at word level. Second, because the misdescriptive
words may distort the semantics of an entire sentence, it will cause greater misalignment of the
semantics of images and text. Existing models usually adopt forward sequential encoding methods,
which introduce the hidden states of misdescriptive words into all the forward positions in sentence
encoding, leading to the semantic errors of the entire sentence.
Based on this observation, we propose a novel encoder-decoder architecture, called Adaptive

Text Denoising Network (ATD-Net), which adds denoising process into the encoder to reduce
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semantic inconsistency between image and caption (shown in Fig. 2). The major contribution of this
proposal is the two-step encoding of the raw caption at word and sentence levels: (1) Differentiating
the possible noises at the word level through a newly designed cross-modal attention module
called Textual Attention Mechanism (TAM). The misdescriptive words can be considered as white
noises in principle, because their semantics are quite different from those of correct ones, and
their locations are unknown. Using the correct image content as a guide is a very effective way to
differentiate them in the raw caption. Inspired by the self-attention mechanism in BERT models
[28], we design TAM as a cross-attention structure. It assigns low weight to noisy words through
the guidance of image content and recodes each word embedding of the raw caption at word level
by attention weights. (2) Encoding weighted word embedding sequence into a text feature vector
by Bidirectional Encoder at sentence level. Since misdescriptive words easily lead to deviations
of the semantics at sentence level, the encoder should consider adjacent words in both forward
and backward directions to improve its robustness. Through bi-directional coding of the sequence
of word embeddings, ATD-Net is able to comprehensively consider the semantic information of
both past and future words, which further enhances the model’s robustness. Finally, the decoder
generates accurate captions word by word with both text features and image features extracted
from the encoder.

In the experiments, to further test the denoising ability of our model, we artificially add variable
proportions of misdescriptive words into different parts of speech in the raw captions. Experimental
results on the MS-COCO dataset demonstrate that the proposed ATD-Net model outperforms or
is competitive with the state-of-the-art methods and shows pretty good ability on misdescriptive
word editing.

Our contributions are summarized as follows:
(1) We design a Textual Attention Mechanism (TAM) in ATD-Net to differentiate the possible

noises from the raw captions, which achieves the cross-modal semantic matching of image and
caption at word level.

(2) We propose a Bidirectional Encoder at sentence level to make the model focus on the global
information contained in the raw caption when generating each word of a new caption.

(3) We add misdescriptive words into different parts of speech with variable proportions to the
widely used MS-COCO dataset. Through conducting extensive experiments on the MS-COCO, we
demonstrate that the proposed ATD-Net can effectively edit inaccurate captions and has great
robustness.
The rest of the paper is organized as follows: Section 2 reviews the related work. Section 3

presents our method in details. Section 4 reports the experiment results. Section 5 concludes the
paper with future work.

2 RELATEDWORK
In this section, we review the recent studies related to image caption editing. To conclude, this
task can be divided into two sub-categories according to their inputs, that is, image captioning and
sequence-to-sequence editing.

2.1 Image Captioning
Image captioning aims to find cross-modal associations between image and text. The neural encoder-
decoder model has achieved initial success in the field of image caption in past few years. In the
basic encoder-decoder framework, the convolutional neural network (CNN) is usually adopted
to encode the image to feature vectors, while the recurrent neural network (RNN) is used to
decode the feature vectors to a sentence word by word [1, 2]. Later on, inspired by the excellent
performance of self-attention mechanism in the BERT [11], a number of approaches [10, 24] use
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Transformer to decode visual features into captions effectively. Therefore, encoder-decoder models
based on CNN and Transformer become common recently. Later, some researchers try to model
the relationship between image and text by embedding new neural network modules [8, 20] into
the encoder-decoder structure. For example, some methods [22, 25, 55, 57] use GCN and scene
graphs to model the correlation between objects in the image. Moreover, recent advances in image
captioning use deep reinforcement learning (RL) [4, 21, 26] to alleviate the “exposure bias” during
cross-entropy training. In this paper, we also choose to train the basic encoder-decoder framework
with cross-entropy loss and reinforcement learning respectively.

In the cross-modal image caption task, the generated sentences are susceptible to incorrect
cross-modal semantic matching. To this end, the attention mechanism [19, 23, 54, 58] has been
widely used in recent years to align image and text across modalities. Xu et. al. [3] integrate soft and
hard attention mechanisms into LSTM based decoder, selecting the most relevant image regions for
word prediction at each decoding stage. On the other hand, Anderson et al. [5] utilize bottom-up
and top-down attention mechanisms, which can calculate attention weight at the level of objects
and other salient image regions. After that, Guo et. al. [9] propose a ruminant image captioning
framework, which attempts to introduce the polishing process into image caption generation
procedure. In addition, the structure with transformer as decoder [14] has also been well applied in
the field of image caption in recent years. Self-attention mechanism is used to find more fine-grained
features in images [10, 28]. However, the existing work still cannot achieve effective semantic
alignment of image and text, which leads to the existence of description bias. In this paper, we
propose an Adaptive Text Denoising Network to further realize the semantic matching of image
and caption by accurately locating and editing noisy words from raw captions.

2.2 Sequence-to-Sequence Editing
Sequence-to-sequence editing can be roughly divided into two categories according to the task
modalities: one is single-modal text sequence editing, and the other is cross-modal image caption
editing.
Text sequence editing is a classic single-modal natural language processing (NLP) task. In

the past few years, inspired by the performance of the encoder-decoder structure in machine
translation [17, 18], a number of approaches [40–43] attempt to use a deep neural network to
deal with the task of sequence-to-sequence editing and have achieved initial success. Kyunghyun
et. al. [40] first propose the Seq2seq encoder-decoder structure based on RNN, then a variety
of attention mechanisms [41–43] are introduced into the basic model of [40] and achieve better
performance. LaserTagger [44] achieves finer editing of text sequences by combining Bert encoder
and autoregressive transformer decoder. Meanwhile, Recurrence [45] improves the performance of
model by narrowing down the editing sentence length through a reasoning algorithm based on
recursive iteration. Later, some approaches [46, 47] begin to focus on more complex text sequence
editing tasks. Quantifiable Sequence Editing (QuaSE) [46] uses content and result similarities to
model pseudo-parallel sentences, which makes the generated sequence closer to the pre-defined
goals. Pre-training of Denoising Autoencoders (PoDA) [47] considers the influence of text noise on
sequence editing, which first pre-trains the noisy data and then fine-tunes the transformer model
to enhance generalization performance.

Unlike traditional text sequence editing tasks, image caption editing is a cross-modal sequence
editing task, which requires not only text information in the raw caption but also visual information
in the image. Therefore, the encoder needs to encode both image and text modal information at
the same time [7]. Moreover, since the semantic gap between the image and caption significantly
influences the quality of generated captions, the task has high requirements on cross-modal semantic
alignment. Existing mainstream methods for image caption editing is based on encoder-decoder
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framework. The encoder encodes the image and text into feature vectors respectively, and the
decoder generates accurate image descriptions on the basis of these feature vectors. For example,
Fawaz andMahmoud [6] introduce a novel framework that learns what to be kept, removed or added
to the existing caption from a given framework at each timestep. This study uses Deep Averaging
Network (DAN) to encode the existing captions. However, DAN ignores the word-level noises when
encoding sentences into feature vectors, which may lead to serious error propagation in the training
of the model. After that, Fawaz and Mahmoud [7] propose an edit network to image captioning
based on iterative adaptive refinement of an existing caption. In this study, each word selected from
the raw caption has its corresponding memory state and is copied into the internal structure of the
LSTM at each decoding step. Although this method has shown its effectiveness in the experimental
performance, it wastes much semantic information as it discards all the information after the most
relevant word in the raw caption. In this paper, we introduce a new framework for image caption
editing, in which we employ Textual Attention Mechanism (TAM) and Bidirectional Encoder to
recode the raw caption from the word level and sentence level.

3 OUR METHOD
In this section, we introduce the whole framework of our Adaptive Text Denoising Network (ATD-
Net), which is depicted in Fig. 3. Section III-A gives an overview of the framework. Section III-B
and Section III-C introduce the Image Encoder and the Caption Encoder respectively. Section
III-D presents the framework of Caption Decoder. Finally, we introduce the training objectives of
ATD-Net in Section III-E.

3.1 Overview of the Framework
The goal of image caption editing is to generate a sentence 𝑆 = {𝑤1 , ...,𝑤𝑇 } that accuratly describes
the image content, given an image 𝐼 and a raw caption 𝐶 with misdescriptive words. The objective
is to maximize the sum of log-likelihood of the corresponding words:

𝜃 ∗ = argmax
𝜃

𝑇∑
𝑡=1

log𝑝 (𝑤𝑡 |𝐼 ,𝐶,𝑤0, ...,𝑤𝑡−1, 𝜃 ) (1)

where𝑤
𝑡
is the 𝑡-th word in a sentence 𝑆 , 𝑇 is the sentence length and 𝜃 represents the parameters

to be learned.
The framework of our ATD-Net is an encoder-decoder structure. The encoder is used to transform

both image and the raw caption into fixed-size feature vectors respectively, while the decoder is
used to generate accurate description by image and textual feature vectors. Specifically, the encoder
consists of two parts: Image Encoder and Caption Encoder. In Caption Encoder, instead of encoding
the entire sentence through DAN and LSTM as most of the existing methods do, we combine the
newly designed Textural Attention Mechanism (TAM) with the Bidirectional Encoder to extract
more accurate semantic representations from the raw caption. Note that, the input of Caption
Encoder requires not only the raw caption but also the output of the current state in the decoder
that contains the image content.

3.2 Image Encoder
Given an image 𝐼 , we encode it into the spatial image features with CNN encoder followed by
previous work [5]:

𝑉 = 𝐶𝑁𝑁 (𝐼 ) (2)
where 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑘 }, 𝑣𝑖 ∈ 𝑅2048, and each image feature 𝑣𝑖 encodes a salient region of the
image. 𝑘 is the number of regions, which is set to 36 in this paper. Specifically, we first use Faster
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Fig. 3. The overview of our Adaptive Text Denoising Network (ATD-Net), which is an encoder-decoder
based model. Image Encoder and Caption Encoder transform the input image and the raw caption into
feature vectors respectively. Particularly, the Caption Encoder uses a Textual Attention Mechanism (TAM)
to differentiate the possible noises in the raw caption at word level firstly. Then Bidirectional Encoder is
applied to encode the extracted word feature to generate the text feature vector at sentence level. For the
decoder, Attention LSTM and Language LSTM are used to fuse the text feature and image feature to generate
a sentence that can describe the image accurately.

R-CNN with ResNet-101 [30] to divide every image into 𝑘 sub-regions and encode them into feature
vectors 𝑣𝑖 . Subsequently, we can get the final feature vector of each image through mean pooling
processing:

𝑉 =
1
𝑘

∑𝑘

𝑖=1
𝑣𝑖 (3)

3.3 Caption Encoder
For the raw caption, ATD-Net encodes it in three steps: (1) Caption Precoding; (2) Textual Attention
Mechanism; (3) Bidirectional Encoder. Firstly, Caption Precoding part pre-codes each word of the
raw caption into a word feature vector. Subsequently, Textual Attention Mechanism designs a cross-
modal attention module to differentiate the possible noises at the word level. Finally, Bidirectional
Encoder encodes weighted word sequence into a text feature vector at sentence level.

3.3.1 Caption Precoding. For a given caption 𝐶 , we first use a one-layer LSTM to achieve the
feature representation of each word in the raw caption like [7]:

𝐻𝑐 = 𝐿𝑆𝑇𝑀 (𝐶) (4)

where 𝐻𝑐 = [ℎ𝑐1, ℎ𝑐2, ..., ℎ𝑐𝑛], and 𝑛 is the number of words in caption. Each word in raw caption is
precoded into a feature vector ℎ𝑐𝑗 by this method.

3.3.2 Textual Attention Mechanism. The raw caption may have some misdescriptive words
that do not match the semantic of image. Therefore, the word embedding 𝐻𝑐 generated by Caption
Precoding is noisy, and the location of these noisy word embeddings is unknown. To overcome
this problem, we propose a Textual Attention Mechanism (TAM) (shown in Fig. 4(a)) inspired by
Transformer to differentiate the possible noises at the word level. The input of TAM consists of
two parts, one is 𝐻𝑐 generated by Caption Precoding, and the other is hidden layer state ℎ1𝑡 of
Attention LSTM in the decoder. The TAM first assigns low weight to noisy word embedding in
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Fig. 4. (a): TAM first calculates similarity weight 𝛼 𝑗 between 𝑄𝑢𝑒𝑟𝑦 and 𝐾𝑒𝑦. Subsequently, TAM recodes
the word embedding 𝑉𝑎𝑙𝑢𝑒 to generate some weighted average 𝐼̂ . (b): Bidirectional encoder module consists
of two layers of LSTM units, which encodes the weighted words into a text feature vector by bidirectional
coding.

𝐻𝑐 , then multiplies the weighted word embedding with the hidden layer state ℎ1𝑡 which contains
the image content. Due to the semantic gap between visual and textual modalities, we first use
Attention LSTM in the decoder part to map visual features into a shared dimensional space. Then,
we use the feature vector ℎ1𝑡 as ‘Query’ to distinguish noise words through TAM.

In our proposal, TAM bases on three sets of vectors, namely a set of 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑄 , 𝑘𝑒𝑦𝑠 𝐾 and 𝑣𝑎𝑙𝑢𝑒𝑠
𝑉 . 𝑄𝑢𝑒𝑟𝑖𝑒𝑠 are the hidden layer state ℎ1𝑡 at the current time of Attention LSTM in the decoder. The
𝑘𝑒𝑦𝑠 and 𝑣𝑎𝑙𝑢𝑒𝑠 are both ℎ𝑐𝑗 generated by Caption Precoding. Firstly, we calculate the correlation
weight 𝛼 𝑗 through a set of 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 and 𝑘𝑒𝑦𝑠 . Then each word embedding is recoded with 𝛼 𝑗 to
generate the attention weighted word embedding 𝐼 𝑗 as follows:

𝛼 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑇
𝛼 tanh(𝑊𝑐𝛼ℎ

𝑐
𝑗 +𝑊𝑠𝛼ℎ

1
𝑡 )) (5)

𝐼j=ℎ
𝑐
𝑗 · 𝛼 𝑗 (6)

where𝑊𝑐𝛼 ∈ R𝐻×𝐶 ,𝑊𝑠𝛼 ∈ R𝐻×𝑆 and𝑊𝑇
𝛼 ∈ R𝐻 are learned parameters.

In Eq 5, the correlation weight 𝛼 𝑗 is represented by the correlation coefficient between 𝑞𝑢𝑒𝑟𝑦 ℎ1𝑡
and 𝑘𝑒𝑦 ℎ𝑐𝑗 . As the semantic of the misdescriptive word is white noise which is quite different from
the correct words, 𝛼 𝑗 is able to differentiate the noisy words by calculating the similarity scores
between the correct semantics guided by the image and the word semantics in the raw caption. In
particular, word embedding that is more related to the image-guided semantic in the raw caption
will obtain a higher attention score 𝛼 𝑗 , correspondingly, the correlation coefficient 𝛼 𝑗 of the noise
position 𝑗 will be smaller. The attention-weighted word embedding 𝐼 𝑗 then contains little semantic
representation of noisy word embeddings.

In addition, unlike the traditional self-attention mechanism in Transformer, TAM is a cross-modal
attention mechanism. Every time the decoder part inputs a 𝑞𝑢𝑒𝑟𝑦 ℎ1𝑡 , TAM will calculate 𝑛 weighted
word embedding based on 𝐻𝑐 . Specifically, in the self-attention mechanism, 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 , and 𝑞𝑢𝑒𝑟𝑦
are the same elements in text modality, but the 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 , and 𝑞𝑢𝑒𝑟𝑦 used by TAM in this paper
are the different elements in both text and visual modalities.

3.3.3 Bidirectional Encoder. Bidirectional Encoder generates a text feature vector containing
the correct semantics from the sentence level of the raw caption. Through TAM, we obtain the
weighted encoding 𝐼 𝑗 of each word according to the image semantic in the raw caption. However,
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due to the denoising process, some weighted word embeddings 𝐼 𝑗 are vacant. For the coding of
these vacant word embeddings, all available input information in the past and future of a time
frame needs to be considered. Therefore, in order to fully utilize the input information, we adopt
Bidirectional Encoder to encode the weighted word embedding sequence. In this way, we integrate
these weighted sequences and output the final text feature vector needed by each time frame of the
decoder.
As shown in Fig. 4(b), The Bidirectional Encoder is designed as a Bi-LSTM based structure,

which consists of two layers of LSTM with different direction encoding. The first layer is forward
encoding LSTM: The input of each LSTM unit is the previous extracted word embedding 𝐼 𝑗 and the
hidden layer state ℎ+𝑗−1 of the previous time frame in forward encoding LSTM. The second layer is
backward encoding LSTM: the input of each LSTM unit is also the extracted word embedding 𝐼 𝑗
and the hidden layer state ℎ−𝑗+1 of the latter time frame in backward encoding:

𝑎+ = 𝐵𝑖𝐿𝑆𝑇𝑀+ (𝐼 𝑗 )
𝑎− = 𝐵𝑖𝐿𝑆𝑇𝑀− (𝐼 𝑗 )

(7)

where 𝐵𝑖𝐿𝑆𝑇𝑀+ and 𝐵𝑖𝐿𝑆𝑇𝑀− are the forward coding layer and the backward coding layer of the
Bidirectional Encoder respectively.
Finally, the text feature vector 𝛼𝑡𝑒𝑥𝑡 extracted from the raw caption is generated by combining

the output of the two layers as follows:

𝑎𝑡𝑒𝑥𝑡 =
1
2
(𝑎+ + 𝑎−) (8)

3.4 Caption Decoder
Following prior work [5], the Caption Decoder of our ATD-Net framework consists of two layers
of LSTM: Attention LSTM and Language LSTM.

3.4.1 Attention LSTM. Attention LSTM generates the hidden layer state ℎ1𝑡 which contains the
image content at the current position and passes it to the Caption Encoder to calculate the attention
weights. The structure of Attention LSTM is the same as that of traditional LSTM, and its input
consists of three parts as follows:

𝑥1𝑡 = [ℎ2𝑡−1,𝑉 ,𝑊𝑒Π𝑡 ] (9)
where ℎ2𝑡−1 is the hidden layer state corresponding to the previous iteration step of Language LSTM,
𝑉 is the mean-pooled image features, Π𝑡 is one-hot encoding, and𝑊𝑒 is a word embedding matrix.
Through the guidance of image content and ground-truth caption, Attention LSTM can generate
noiseless hidden layer coding ℎ1𝑡 at the current iteration position.
Since the training process of Attention LSTM and Caption Encoder are independent of each

other, noisy words in the raw caption will not directly interfere with the training of the Attention
LSTM.

3.4.2 Language LSTM. In the decoder, Language LSTM generates accurate captions word by
word. The input of Language LSTM consists of four parts:

𝑥2𝑡 = [ℎ1𝑡 , ℎ2𝑡−1, 𝛼𝑡𝑒𝑥𝑡 ,𝑉𝑡 ] (10)

where ℎ1𝑡 is the hidden layer state of the current time frame of Attention LSTM, ℎ2𝑡−1 is the hidden
layer state of the previous time frame of Language LSTM, 𝛼𝑡𝑒𝑥𝑡 is the text feature vector extracted
from the raw caption by TAM and Bidirectional Encoder in Caption Encoder, and𝑉𝑡 is the attended
image feature used to focus on the most matching image area when generating each word with
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“soft” attention mechanism like [5, 7]. We use a normalized attention weight 𝛼𝑖,𝑡 for image features
𝑣𝑖 of each region as follows:

𝛼𝑖,𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑇
𝑉 tanh(𝑊𝑣𝛼𝑣𝑖 +𝑊ℎ𝛼ℎ

1
𝑡 )) (11)

𝑉𝑡 =

𝐾∑
𝑖=1

𝛼𝑖,𝑡 · 𝑣𝑖 (12)

where𝑊𝑣𝛼 ∈ R𝐿×𝑉 ,𝑊ℎ𝛼 ∈ R𝐿×𝑆 and𝑊𝑇
𝑉

∈ R𝐿 are learned parameters.
Subsequently, to get an accurate sentence 𝑦1:𝑇 = (𝑦1, ..., 𝑦𝑇 ), the hidden state ℎ2𝑡 of Attention

LSTM can be used to generate words at each time step 𝑡 iteration position with maximum probability
distribution:

𝑝 (𝑦𝑡 |𝑦1:𝑡−1) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑝ℎ
2
𝑡 + 𝑏𝑝 ) (13)

where𝑊𝑝 ∈ R |Σ |×𝑆 and 𝑏𝑝 ∈ R |Σ | are learned weights and biases. The distribution is calculated as
the product of the conditional distributions at all time steps:

𝑝 (𝑦1:𝑇 ) =
𝑇∏
𝑡=1

𝑝 (𝑦𝑡 |𝑦1:𝑡−1) (14)

3.5 Objectives
Following previous studies on image captioning [1, 5], we train our model with a word-level
cross-entropy loss (XE). Given the target ground truth sentence 𝑦∗1:𝑇 = (𝑦∗1, ..., 𝑦∗𝑇 ), we minimize the
following cross entropy loss:

𝐿𝑋𝐸 (𝜃 ) = −
𝑇∑
𝑡=1

log(𝑝𝜃 (𝑦∗𝑡 |𝑦∗1:𝑡−1)) (15)

where 𝜃 is the parameters of the captioning model.
Following prior work of Self-Critical Sequence Training [4], we further employ a reinforce-

ment learning algorithm to directly optimize the metric of CiDEr-D. Specifically, the optimization
objective is to minimize the negative expected reward as follows:

𝐿𝑅𝐿 (𝜃 ) = −𝐸𝑦1:𝑇 ∼𝑃𝜃 [𝑟 (𝑦1:𝑇 )] (16)

where 𝑟 (𝑦1:𝑇 ) is the cider score of the generated sentence.
The final policy gradient is calculated as follows:

∇𝜃𝐿𝑅𝐿 (𝜃 ) ≈ −(𝑟 (𝑦𝑠1:𝑇 ) − 𝑟 (𝑦1:𝑇 ))∇𝜃 log 𝑃𝜃 (𝑦
𝑠
1:𝑇 ) (17)

where 𝑟 (𝑦𝑠1:𝑇 ) defines the cider score of a sampled caption and 𝑟 (𝑦1:𝑇 ) defines the baseline cider
score obtained by greedily decoding the current model.

4 EXPERIMENTS
4.1 Dataset
We conduct our experiments on the most popular image caption dataset MS-COCO [48]. The
whole MS-COCO dataset contains 123,287 images, in which there are 82,783 training images, 40,504
validation images, and 40,775 testing images with five human-annotated sentences. In this paper,
we employ standard “Karpathy” data split [32] for model evaluation, where 113,287 images are
used for training, 5,000 are used for validation, and 5,000 are used for testing.
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Fig. 5. Some examples of the raw captions constructed in our experiment.

4.2 Implementation Details
For experimental data, we divide each image into 36 sub-regions through Faster R-CNN, which
is pre-trained on ImageNet [31] and Visual Genome [36]. Each region is represented as a 2,048-
dimensional feature vector. Similar to [7], we extract the words that appear over 5 times to form a
vocabulary dictionary, and each word is represented as a “one-hot” vector.

We construct the raw inaccurate captions by artificially adding word noises into the captions
generated by the previous model [7, 14]. As shown in Figure 5, we first use “AoANet” [14] to
generate caption of the MS-COCO dataset, then randomly replace some common words with other
words of the same part of speech, thereby obtaining the raw captions that need to be edited in our
experiment.

For the proposed model, the hidden size of the LSTM in both encoder and decoder is set to 1024.
We set the initial learning rate to 5 × 10−4, and let it decay by 20% every three epochs. For the
training stage, the whole architecture is firstly optimized by cross-entropy loss with 25 epochs.
Then, we further optimize the metric of CIDEr scores with “Self-Critical Sequence Training” [4] for
another 10 epochs. The whole experiment is trained and tested on NVIDIA Tesla V100 GPU.
Following the standard evaluation protocol, we utilize the metrics of BLEU@N [33], ROUGE-L

[34], and CIDEr-D [35] to evaluate our model.

4.3 Baselines
We divide baselines into three categories according to whether the model introduces scene graphs
and external pre-trained Transformers.

Group I: The first group does not utilize scene graph and pre-trained Transformer where our
ATD-Net also belongs to. This group of models includes NIC [1], which uses CNN as encoder, and
LSTM as decoder; SCST [4], which uses reinforcement learning to further optimize the CiDEr-D
metric of the model; Adaptive [16], which uses an adaptive attention mechanism to dynamically
focus on each image region in time sequence; Up-Down [5], which uses bottom-up and top-down
attention mechanism to weigh the image features extracted by Faster R-CNN; RFNet [38], which
fuses the visual information extracted from multi-layer CNN; MN [6], which encodes raw caption
with DAN and utilizes decoder LSTM to simultaneously decode visual and textual representations
to generate a new caption; AAT [49], which utilizes a novel Adaptive Attention Time module to
align image and text adaptively; LBPF [50], which pays attention to both visual feature of the past
and the predictive word of the future; SG-RWS [51], which adds a text retrieval module in decoder
part to generate word by extracting the prior knowledge of other captions; and ETN [7], which
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Table 1. Performance of our model and other state-of-the-art models on the MS-COCO “Karpathy” test split
under cross-entropy training and CIDER-D score optimization. † indicates that scene graph is introduced in
these models. * indicates that these models use a pre-trained transformer to perform self-attention on visual
features.

Method
Metric Cross-Entropy Loss CIDEr-D Score Optimization

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE CIDEr BLEU-1 BLEU-4 ROUGE CIDEr
NIC[1] - - - 29.6 52.6 94.0 - 31.9 54.3 106.3

SCST(Att2in)[4] - - - 31.3 54.3 101.3 - 33.3 55.3 111.4
Adaptive[16] 74.2 58.0 43.9 33.2 54.9 108.5 - - - -
Up-Down[5] 77.2 - - 36.2 56.4 113.5 79.8 36.3 56.9 120.1
RFNet[38] 76.4 60.4 46.6 35.8 56.8 112.5 79.1 36.5 57.3 121.9
MN[6] 76.9 61.2 47.3 36.1 56.4 112.3 - - - -
AAT[49] - - - 37.0 57.3 117.2 80.1 38.5 58.2 126.7
LBPF[50] 77.8 - - 37.4 57.5 116.4 80.5 38.3 58.4 127.6

SG-RWS[51] 77.1 - - 36.6 56.9 116.9 80.3 38.5 58.4 129.1
ETN[7] 77.9 62.5 48.9 38.0 57.7 120.0 80.6 39.2 58.9 128.9

† GCN-LSTM[12] 77.3 - - 36.8 57.0 116.3 80.5 38.2 58.3 127.9
† SGAE[39] - - - 36.9 56.4 113.5 80.8 38.4 58.6 127.8

*AOA[14] 77.3 61.6 47.9 36.9 57.3 118.4 80.5 39.1 58.9 128.9
*X-Linear[13] 77.3 61.5 47.8 37.0 57.5 120.0 80.9 39.7 59.1 132.8
*DLCT[52] - - - - - - 81.4 39.8 59.1 133.8

ATD-Net(Ours) 78.2 63.1 49.5 38.5 58.1 118.5 80.8 39.3 59.0 128.6

generates each word by selecting the LSTM cell state corresponding to the most relevant words in
the raw caption.

Group II: The second group introduces an additional Scene Graph on the basis of the first
group. This group of models includes GCN-LSTM [12], which uses GCN to integrate the spatial
information and semantic information extracted from the image; and SGAE [39], which constructs
the visual relationship graph guided by the caption to improve the performance.

Group III: The third group introduces a pre-trained Transformer to perform self-attention on
visual features, which introduces extra information from external datasets. This extra information
helps the model further understand the object and visual relation in the image. This group of models
includes AOA [14], which extends the conventional attention mechanism to reweight the image
features; X-Linear [13], which utilizes X-Linear attention module to extract fine-grained features
of image; and DLCT [52], which fuses image grid features and image area features through cross
attention module.

4.4 Comparison With Baselines
Table 1 shows the comparison between our model and the baseline models on Cross-Entropy Loss
and CIDEr-D Score Optimization. For a fair comparison, all the models are firstly trained under
cross-entropy loss and then optimized by the CIDEr-D score. It can be seen from Table 1 that our
model consistently outperforms the baseline models in Cross-Entropy Loss training stage and is
competitive with the state-of-the-art models in CIDEr-D Score Optimization. In particular, compared
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with the first and the second groups of methods that do not apply pre-trained Transformer, our
ATD-Net performs the best in both cross-entropy loss training and CIDEr-D score optimization.
At the cross-entropy loss training stage, ATD-Net increases the BLEU-4 and ROUGE scores to
38.5 and 58.1 respectively. At the CIDEr-D score optimization stage, ATD-Net still achieves the
highest performance in BLEU@1-4 and ROUGE-L scores and has good competitiveness in CIDEr-D
score with SG-RWS [51]. Compared with the third group of methods which employ pre-trained
Transformer, our ATD-Net is still competitive in performance as it can fully extract the correct
semantics in the raw caption. Especially, the results in Table 1 show that our ATD-Net still achieves
the best results in BLEU@1-4 and ROUGE-L score at cross-entropy loss training stage and is
competitive at CIDEr-D optimization stage. Moreover, our ATD-Net also exceeds the performance
of some models that use visual self-attention performed by pre-trained Transformers, such as AOA
[14].
In particular, ETN [7] is the previous state-of-the-art method of image caption editing and the

raw caption it uses does not contain word noises artificially introduced. If we use the same raw
caption with misdescriptive words in this article on ETN [7] model, all of these metrics of ETN
will be lower than the values in Table 1, especially CIDEr will drop to around 116-117 under the
cross-entropy loss training, slightly lower than our ATD-Net. Since our ATD-Net can filter out
some noisy words that are not related to image semantics by TAM and Bidirectional Encoder, the
generated captions will be more similar to the ground-truth sentences. Therefore, our method
will perform better on the metrics that compare the similarity between generated captions and
ground-truth captions such as BLEU and ROUGE-L.

4.5 Qualitative Analysis
To further test the denoising ability of our ATD-Net, we add different forms of noisy words to
the raw caption and judge the accuracy of the model’s restoration. We test the noise reduction
performance of our model from the following two aspects: (1) The denoising capability on words
with different parts of speech; (2) The denoising capability under different noise ratios.

Firstly, we classify the noisy words in the caption of the MS-COCO dataset into six categories: 1.
Verb; 2. Noun (human or animal); 3. Noun (food); 4. Noun (location or place); 5. Noun (common
objects); 6. Noun (color). We choose about eight words from each category as the noisy words.
Then, to add noise into the caption, we randomly replace each word with different noisy words of
the same category. In this paper, the noise ratio is set from 5% to 30%. For example, when adding
10% noise to the word “dog”, we randomly take out 10% of the images that contain “dog” in the
dataset, and randomly replace the corresponding word “dog” in the raw caption with other noisy
words such as “cat” and “tiger”. Finally, we record whether the captions generated by the model
contain the exact words “dog”. The accuracy is expressed as the percentage of pictures that our
model can generate the correct words.

Table 2 demonstrates the accuracy of our ATD-Net on editing noisy words, which is composed
of two parts: Average precision and Variance. The average precision indicates the probability of the
target word that can be accurately generated under the current noise ratio. The Variance indicates
the probability where the generated sentence does not contain the target word, but it can still
correctly describe image semantics. For example, we replace the correct word “boy” in the raw
caption with the misdescriptive word “girl”, while the word generated by our ATD-Net is “person”,
which can still correctly describe the image content. From Table 2, we can observe that the proposed
ATD-Net model has a good ability to edit captions with noisy words.

In addition, Fig. 6 shows the average precision of our ATD-Net for words with different noise
ratios and different parts of speech through the line chart. Specifically, our model can correct the
noisy words with a 100% accuracy under the noise ratio of 5%, and the accuracy declines as the noise

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Adaptive Text Denoising Network for Image Caption Editing 111:13

Table 2. The noise detection accuracy on the MS-COCO dataset. The noise words are divided into six
categories, each category randomly selected about 8 words, and then tested the noise reduction ability of the
model when the noise ratio is 5%, 15%, 30%.

(a)

Verb Noise ratio Human or Animal Noise ratio

5% 15% 30% 5% 15% 30%

Stand 99.37±0.27 97.90±0.77 96.67±1.35 Boy 99.16±0.41 97.10±1.25 94.91±1.66
Hold 99.21±0.42 98.08±0.99 95.38±2.27 Girl 98.00±0 97.00±1.00 96.00±2.00
Rid 99.21±0.16 98.26±0.79 96.32±1.42 Person 100±0 97.86±0.31 96.63±0.92
Sit 98.93±0.17 98.17±0.68 95.65±2.06 Dog 100±0 98.26±0 97.68±0
Lay 98.36±0 97.39±0.29 96.77±0.83 Cat 99.49±0 98.98±0 97.96±0
Walk 99.30±0 96.15±1.05 92.30±2.10 Giraffe 100±0 100±0 98.92±0
Play 98.64±0 97.96±0 96.26±0.34 Elephant 100±0 97.62±0 96.43±0
Fly 99.29±0 97.51±0.35 96.45±0.71 Horse 100±0 99.12±0 98.24±0

(b)

Objects Noise ratio Place Noise ratio

5% 15% 30% 5% 15% 30%

Computer 99.27±0 98.54±0 98.17±0.36 Bathroom 98.50±0 97.00±0 94.38±0.38
Table 99.11±0.08 95.72±1.21 90.63±2.42 Kitchen 100±0 97.50±0.35 95.38±0.36
Bed 100±0 98.37±1.04 95.60±1.73 Street 98.63±0.23 96.34±0.92 92.55±2.06
Chair 98.42±0 97.31±1.58 93.47±3.17 Building 97.90±0.70 96.15±1.05 91.60±2.10

Umbrella 100±0 100±0 96.56±1.15 Field 98.68±0.83 96.30±2.02 92.85±3.81
Airplane 100±0 96.82±1.58 92.84±2.37 Ocean 97.60±0 93.40±1.80 90.20±4.80

Bus 99.21±0 98.02±0.39 96.45±0.39 Grass 96.12±0 95.63±0.48 92.24±0.97
Train 98.98±0 97.96±0 96.94±0.51 Beach 98.77±0 96.31±0.61 94.79±0.92

(c)

Food Noise ratio Color Noise ratio

5% 15% 30% 5% 15% 30%

Banana 100±0 99.26±0.24 99.02±0.49 Red 98.76±0.54 97.72±2.59 94.09±5.22
Pizza 100±0 100±0 99.17±0.83 Yellow 98.75±1.25 96.25±2.50 90.00±5.82

Vegetable 98.80±1.21 96.39±3.62 92.19±5.41 White 99.18±0.41 96.71±2.05 91.99±5.13
Cake 100±0 100±0 98.71±0 Brown 100±0 97.50±2.50 91.00±5.83
Water 99.48±0.52 98.96±0.52 95.84±2.07 Green 99.28±0.71 95.43±3.57 89.57±7.14
Food 100±0 97.22±0 96.10±0 Black 98.60±0.85 95.21±3.10 90.42±6.21

Sandwich 100±0 96.83±0 92.88±0.79 Blue 99.35±0.64 96.77±3.23 92.24±6.46

ratio increases. However, even with the noise ratio of 30%, our model still has over 90% probability
to generate caption with accurate words.

4.6 Ablation Studies
To prove the effectiveness of the Textual Attention Mechanism (TAM) and Bidirectional Encoder
in our ATD-Net and to provide more detailed parameter analysis, we conduct extensive ablation
studies on the MS-COCO dataset. The results of the component analysis are reported in Table 3.
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Fig. 6. The average precision of our ATD-Net for words with different noise rates and different parts of speech.

Table 3. Ablation studies on the MS-COCO dataset about essential components of ATD-Net

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE CIDEr

Baseline 77.2 61.5 47.3 36.2 56.4 113.5

+TAM 77.6 62.8 48.8 38.0 57.5 116.7

+LSTM 78.0 63.0 49.4 38.3 58.0 117.9
+BiLSTM 78.2 63.1 49.5 38.5 58.1 118.5

In the ablation experiments, we remove the whole Caption Encoder of ATD-Net and use the
decoder only with visual attention as the baseline in the ablation experiment. We first add Caption
Encoder with Caption Precoding and Textual Attention Mechanism to the baseline, then each word
embedding produced by Textual Attention Mechanism is directly summed and averaged as the
input of language LSTM in the decoder. From Table 3, it shows that after the introduction of Textual
Attention Mechanism, our ATD-Net can achieve higher performance.

TAM can achieve rich text semantics from the raw caption. To fully extract this semantic
information at the sentence level, we have made two different attempts. Specifically, we try to use
forward direction coding based on LSTM and bidirectional direction coding based on Bi-LSTM
respectively. The experimental results show that both methods can improve the performance of
the model, but the Bidirectional Encoder can better call the context semantic information to make
the performance of the model reach the best. Moreover, it can be seen that ATD-Net can achieve
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Fig. 7. Weight parameter visualization of Textual Attention Mechanism (TAM) in our ATD-Net. The x-axis
and y-axis correspond to the words in the raw caption and the generated caption, respectively. Darker color
illustrates higher attentional weight. The red number indicates the weight value assigned by TAM to each
word in the raw caption.

Fig. 8. Examples of captions generated by our ATD-Net and raw captions with noisy words. The words in red
are misdescriptive words and the words in blue are corrected words generated by ATD-Net.

certain stability and higher performance after the introduction of Bidirectional Encoder, which
reflects the robustness of ATD-Net.

Fig. 7 shows an example of Textual Attention Mechanism (TAM) weight parameter visualization.
At each training step, TAM will attach different weights to each word of the raw caption. In this
example, the corresponding matrix is the correlation weights of the textual attention between
words in the generated caption and words in the raw caption. Moreover, we mark the words with
the highest weight values at each iteration and the weight value of the word that is not marked in
this example is relatively low. It can be found that, when the words of the raw caption have a high
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similarity with the image semantics, TAM will attach a higher weight to the corresponding word
in the raw caption, such as generating the word “bears” and “river”. Meanwhile, if the semantics
of the raw caption corresponding to the word to be generated is incorrect, TAM will attach a low
weight to the incorrect word of the raw caption. For example, when generating the word “walking",
TAM will pay more attention to the words “bear”, “around” and “river”, and attach a lower weight
to the misdescriptive word “flying”.

In Fig. 8, we show some qualitative examples of the captions generated by our ATD-Net on the
dataset of MS-COCO. It shows that our model is able to edit the misdescriptive words in the raw
caption well and finally, generate an accurate image caption.

5 CONCLUSION
In this paper, we propose ATD-Net, a novel encoder-decoder based architecture for image caption
editing. This framework solves the problem of the inconsistency between the semantics of image
and caption from word level and sentence level respectively. Specifically, (1) Textual Attention
Mechanism (TAM) is designed to locate and minimize noises at word level. (2) Bidirectional Encoder
is designed for robust caption encoding at sentence level. Experiments on the MS-COCO dataset
show that ATD-Net achieves better performance in the metric of BLEU and ROUGE. Moreover,
ATD-Net can reach an accuracy rate of more than 90% in the editing accuracy of various parts of
speech word noises. In the future, our framework may be extended to related tasks such as video
caption editing. Specifically, we can use the video frame as a guide to correct the text semantic
noises in the raw caption through a cross-modal attention mechanism similar to TAM in ATD-Net.
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