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ABSTRACT
Pretraining and finetuning large vision-language models (VLMs)
have achieved remarkable success in visual question answering
(VQA). However, finetuning VLMs requires heavy computation,
expensive storage costs, and is prone to overfitting for VQA in low-
resource settings. Existing prompt tuning methods have reduced
the number of tunable parameters, but they cannot capture valid
context-aware information during prompt encoding, resulting in
1) poor generalization of unseen answers and 2) lower im-
provements with more parameters. To address these issues, we
propose a prompt tuning method for low-resource VQA named
Adaptive Self-Prompt Tuning (Self-PT), which utilizes representa-
tions of question-image pairs as conditions to obtain context-aware
prompts. To enhance the generalization of unseen answers, Self-
PT uses dynamic instance-level prompts to avoid overfitting the
correlations between static prompts and seen answers observed
during training. To reduce parameters, we utilize hyper-networks
and low-rank parameter factorization to make Self-PT more flexible
and efficient. The hyper-network decouples the number of param-
eters and prompt length to generate flexible-length prompts by
the fixed number of parameters. While the low-rank parameter
factorization decomposes and reparameterizes the weights of the
prompt encoder into a low-rank subspace for better parameter ef-
ficiency. Experiments conducted on VQA v2, GQA, and OK-VQA
with different low-resource settings show that our Self-PT outper-
forms the state-of-the-art parameter-efficient methods, especially
in lower-shot settings, e.g., 6% average improvements cross three
datasets in 16-shot. Code is available at https://github.com/NJUPT-
MCC/Self-PT.

CCS CONCEPTS
• Computing methodologies → Computer vision.
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Figure 1: Comparison between parameter-efficient methods
for low-resource VQA with 16 training samples. We show the
average score across five seeds on VQA v2 and the percentage
of tunable parameters w.r.t. pretrained VL-T5. The green
dashed line represents direct fine-tuning and the blue dashed
line represents fine-tuning method from FewVLM.
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1 INTRODUCTION
Visual question answering (VQA) aims to infer a precise answer
from the given question-image pair. In recent years, pretraining
and finetuning vision-language models (VLMs) have achieved state-
of-the-art performance in VQA [4, 5, 20–23, 41, 48, 50]. Due to the
large numbers of parameters in VLMs, finetuning VLMs leads to
high computational and storage costs, and is prone to overfitting
in low-resource settings where training data size is smaller than
1,000 [3, 17, 53].

Recently, parameter-efficient tuning methods have been pro-
posed to tune VLMs by adjusting lightweight trainable parameters
while keeping most pretrained parameters frozen [13, 14, 17, 19,
25, 32, 42, 47]. Prompt tuning is one of the favorite paradigms in
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parameter-efficient tuning, which concatenates trainable prompt
tokens and the inputs of each block to enable few-shot learning in
downstream tasks, e.g., natural language understanding and genera-
tion [6, 25] and image classification [16]. The general prompt tuning
methods [25] concatenate static prompt tokens and all inputs. Re-
cent studies show that directly updating the trainable tokens leads
to unstable optimization and performance drops [24, 45]. To solve
the above issues, they thus leverage a prompt encoder, e.g., an MLP
[24, 25], to reparameterize the token embeddings. However, exist-
ing static prompt methods would cause two main issues: 1) poor
generalization of unseen answers, 2) lower improvements
withmore parameters. Firstly, existing methods tend to implicitly
correlate prompts and answers that have been observed, making
the static prompts overfit to those seen answers. To be specific, the
static prompts always forget essential general answers unseen in
the training data, called catastrophic knowledge forgetting, thus
leading to a poor generalization of unseen answers. Secondly, in
low-resource settings, the static prompts cannot capture the full
complexity of the task to learn a robust task-level prompt, e.g.,
“Answer the following question: [Question],” thus the embedding
capacity of the prompt encoder is underutilized. Therefore, more
parameters to the prompt encoder cannot learn more valid informa-
tion, which results in lower improvements due to the underutilized
prompt.

To address the above issues, a feasible idea is constructing robust
context-aware prompts in low-resource VQA, which has the follow-
ing advantages: 1) strong generalization of unseen answers, 2)
well utilization of prompt embedding. Firstly, context-aware
prompts can adapt the model to unseen samples in the image classi-
fication tasks [43, 44, 53]. Therefore, we can use the instance-level
context as a condition to encode proper conditional prompts for un-
seen answers, thus improving the generalization ability of prompts.
Secondly, context-aware prompts can capture the complex rela-
tionships between question-image pairs and answers to construct
well-utilized prompt embeddings. Moreover, low-rank methods and
hyper-networks can be utilized to achieve higher improvements
with lower parameters based on the well-utilized prompt embed-
dings, which improves the parameter efficiency of prompt tuning.
Therefore, the context-aware prompts can improve the general-
ization of unseen answers and enable parameter-efficient prompt
tuning, which should be well explored in low-resource VQA.

To construct robust context-aware prompts, we propose an Adap-
tive Self-Prompt Tuning (Self-PT) method to learn the dynamic
context information, as illustrated in Fig 1. To enhance the gener-
alization of unseen answers, Self-PT utilizes instance-level repre-
sentations of question-image pairs as conditions to obtain context-
aware prompts, which are free from implicit correlations between
static prompts and seen answers. Specifically, Self-PT uses learn-
able key-value pairs to search proper prompts for given conditions,
enabling the adaptation ability to provide accurate answers for
unseen samples. To reduce parameters and improve performance,
we utilize hyper-network and low-rank parameter factorization to
make Self-PT more flexible and efficient. The hyper-network allows
simple prompt index information as input to provide weights for
encoding each prompt token so that it can decouple the number of
parameters from prompt length. The low-rank parameter factoriza-
tion decomposes and reparameterizes the embedding layer weights

into a low-rank subspace, which yields better performance with
fewer parameters. With these design considerations, our Self-PT
capitalizes context-aware prompts with dramatically fewer tunable
parameters for more precise answers in low-resource VQA.

Our contributions are summarized as follows:
• We propose Adaptive Self-Prompt Tuning (Self-PT) which
utilizes instance-level multimodal representations as condi-
tions to obtain context-aware prompts. Moreover, Self-PT
provides appropriate instructions to unseen samples, thus
improving the generalization ability.

• We explore low-rank and parameter-reused strategies to con-
struct a parameter-efficient Self-PT method. Specifically, we
employ hyper-network to decouple the number of parame-
ters and the prompt length, making Self-PTmore flexible. We
utilize low-rank parameter factorization to decompose and
reparameterize the weights, making Self-PT more parameter-
efficient.

• Experiments conducted on VQA v2, GQA, and OK-VQA with
different low-resource settings show that our Self-PT out-
performs the state-of-the-art parameter-efficient methods,
especially in lower-shot settings, e.g., 6% average improve-
ments cross three datasets in 16-shot.

2 RELATEDWORK
2.1 Vision-Language Pretraining and

Finetuning
Vision-language pretraining has gained popularity as it can learn
generalized multimodal representations, thus significantly improv-
ing downstream task performance [4, 5, 20–23, 41, 48, 50]. Recent
multimodal pretraining methods use the encoder-decoder frame-
work to unify different tasks into a sequence-to-sequence paradigm
[4, 21–23, 40]. Specifically, they employ generative modeling objec-
tives and use task-specific prompts in the pretraining or finetuning
stage, such as “vqa:” [4, 18, 38]. Therefore, VQA can be considered
a generative task that generates answers based on images and ques-
tions. Some recent studies in VQA have observed that VLMs with
unified encoder-decoder architectures exhibit better generalization
ability [21, 40]. By designing appropriate prompts to instruct a uni-
fied multimodal pretrained model, we can significantly reduce com-
putation costs compared to conventional finetuning. Specifically,
we utilize instance-level multimodal representations as conditions
to obtain context-aware prompts for low-resource VQA.

2.2 Parameter-Efficient Tuning
While finetuning large pretrained models on downstream tasks
can significantly improve performance, it is computationally in-
tensive and requires expensive storage costs. To address this issue,
researchers in natural language processing (NLP) have proposed
parameter-efficient tuning methods [13, 14, 19, 25, 32, 42, 47] that
can tune lightweight trainable parameters while keeping most of
the pretrained parameters frozen. These methods can be split into
two groups, depending on whether new trainable parameters are
introduced: (1) tuning partial parameters of VLMs, such as BitFit
[47] and FISHMask [37], and (2) tuning additional parameters, such
as prompt-tuning [25, 26], adapter [13, 19, 32, 42], and low-rank

5090



Self-PT: Adaptive Self-Prompt Tuning for Low-Resource
Visual Question Answering MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

methods [14, 51]. All of these methods have shown effectiveness in
various NLP tasks.

Inspired by these methods in NLP, recent studies [28, 36, 45, 52]
have introduced these techniques to tune pretrained VLMs for
multimodal tasks. VL-Adapter [36] explores shared and unshared
adapters for vision-language multitask learning, while Yang et al.
[45] investigate prompt tuning methods for generative VLMs. Uni-
adapter [28] proposes unified unimodal and multimodal adapters
for video QA and retrieval tasks. HyperPELT [52] proposes a unified
parameter-efficient framework that uses a shared hyper-network
[29] to prepare weights for lightweight additional modules. These
methods demonstrate the ability to approach or even exceed fine-
tuning in most multimodal tasks. Lately, MixPHM [17] propose an
adapter where up- and down-sample layers are implemented by
multiple PHM linear layers [49] in a mixture of experts manner for
low-resource VQA. MixPHM surpasses finetuning in all varieties
of low-resource settings with few tunable parameters.

However, prompt tuning methods only achieve better perfor-
mancewith sufficient samples [9], while cannot address low-resource
VQA.

2.3 Class/Instance-Level Prompting
Recent class- and instance-level prompt tuning methods for mul-
timodal pretrained models are mainly used for CLIP-based [33]
image classification. CoOp [54] attempts to design class-specific
prompts at CLIP’s language branch and finds them useful for fine-
grained classification. CoCoOp [53] embeds the image features and
adds them with learnable text prompts case-by-case to enhance the
generalization ability in classifying unseen classes. FedAPT [35]
assigns a unique key to each client to adapt prompts across domains
for cross-domain federated image classification. DualPrompt [43]
and L2P [44] create a prompt pool and select the Top𝑘 prompts
for insertion into the model for class-incremental continual learn-
ing. Another trend explores prompting visual concepts for frozen
language models, enabling language models to handle multimodal
tasks. Frozen [39] and PICa [46] prompt multimodal image repre-
sentations and descriptions respectively to large-scale pretrained
language models and obtain the few-shot learning ability in VQA.
Meanwhile, Song et al. [34] use a pretrained language model to
generate question-aware templates. They select the answer with a
higher CLIP contrastive score between images and these templates
that are filled with candidate answers.

However, the above methods with frozen language models are
effective in VQA but require additional pretained prompt encoders,
leading to expensive computation and inefficient storage. We utilize
instance-level representations from VLM as conditions to gener-
ate prompts. Moreover, we employ hyper-networks and low-rank
parameter factorization to construct a parameter-efficient prompt
encoder for low-resource VQA.

3 METHODOLOGY
In this section, we first briefly overview the vision-language frame-
work for VQA and our proposed Self-PT.We then introduce our Self-
PT in detail with adaptive self-prompt embedding and parameter-
efficient construction, to show how we adapt VLM for low-resource
VQA. The overall architecture is illustrated in Fig 2.

3.1 Overview
VQA needs to infer an answer 𝑦 based on a given image 𝐼 and ques-
tion 𝑄 pair. Following recent work [4, 18], we formulate VQA as
a generative modeling task, generating free-form textual answers
for a given question. We utilize a unified generative VLM M(·),
i.e., VL-T5 [4], as our frozen backbone, which consists of a multi-
modal encoder and an auto-regressive decoder. We focus on tuning
the VLM by prompts in a parameter-efficient principle for low-
resource VQA. Existing prompt tuning methods [24, 25] generally
concatenate tunable prefix vectors to the original input 𝑋 , where
𝑋 = concat(𝐼 ,𝑄). However, general prompt tuning methods cannot
capture valid context-aware information during prompt encoding,
resulting in 1) poor generalization of unseen answers and 2) lower
improvements with more parameters. Hence, we propose Self-PT to
solve the above issues by generating instance-level prompts condi-
tioned on the given input 𝑋 . Specifically, the formulation of Self-PT
is demonstrated below:

𝑦 = M(𝐹 (𝐴(𝑋 )), 𝑋 ) (1)

where𝐴(·) is adaptive self-prompt embedding module (Section 3.2),
𝐹 (·) includes two parameter-efficient designs conducted on 𝐴(·)
(Section 3.3). In the following, we will describe the detail of these
two modules.

3.2 Adaptive Self-Prompt Embedding
In this section, we would introduce the adaptive self-prompt embed-
ding module 𝐴(·). Firstly, we analyze the bias that exists in general
prompt tuning methods. Then, we propose adaptive self-prompt
embedding to reduce the impact of the bias.

In general prompt tuning, two sets of prefix vectors 𝑃𝑘 , 𝑃𝑣 ∈
Rℓ×𝑑 are concatenated with the original key-value sequence 𝐶 ∈
R𝑚×𝑑 . Then, for a query vector 𝑥 ∈ R𝑑 in X, multi-head attention1
is performed on the combined keys and values:

𝑥ℎ =Attn(𝑥𝑊𝑞, concat(𝑃𝑘 ,𝐶𝑊𝑘 ), concat(𝑃𝑣,𝐶𝑊𝑣)),

Attn(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇 /

√︁
𝑑𝑘

)
𝑉

(2)

where𝑊𝑞,𝑊𝑘 , and𝑊𝑣 ∈ R𝑑×𝑑 are the weights used to project
inputs to queries, keys, and values. Attention for given query 𝑄 ,
key 𝐾 , and value 𝑉 is also detailed in Eq. (2).

Following [11], Eq. (2) can be decomposed as:

𝑥ℎ =(1 − _(𝑥, 𝑃𝑘 ))Attn(𝑥𝑊𝑞,𝐶𝑊𝑘 ,𝐶𝑊𝑣)

+ _(𝑥, 𝑃𝑘 )Attn(𝑥𝑊𝑞, 𝑃
𝑘 , 𝑃𝑣)

(3)

where the first term is the standard attention without prompts, and
the second term modifies each 𝑥 by the prompts. Note that _(𝑥) is
a scalar that represents the sum of normalized attention weights
on the prompts:

_(𝑥, 𝑃𝑘 ) =
∑
𝑖 𝑒𝑥𝑝 (𝑥𝑊𝑞 (𝑃𝑘𝑖 )

𝑇 )∑
𝑖 𝑒𝑥𝑝 (𝑥𝑊𝑞 (𝑃𝑘𝑖 )𝑇 ) +

∑
𝑗 𝑒𝑥𝑝 (𝑥𝑊𝑞𝑊

𝑇
𝑘
𝐶𝑇
𝑗
)

(4)

Static prompts exert a direct effect on the query token 𝑥 through
the second term in Eq. (3). However, due to the scarcity of samples
in low-resource VQA, it is hard to learn static prompts 𝑃𝑘 and 𝑃𝑣

1Multi-head attention performs the attention mechanism in parallel over 𝑛 heads,
which we omit here for simplicity.
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Figure 2: Overview of Adaptive Self-Prompt Tuning (Self-PT).

that are generalized well for all question types. In contrast, the fixed
𝑃𝑘 and 𝑃𝑣 only serve for adaptation to seen answers, incurring the
bias for unseen answers, e.g., prompting irrelevant seen answers.

To mitigate the above bias, we propose Self-PT to generate adap-
tive, context-aware prompts conditioned on the input representa-
tions from the self-attention layer. We construct the prompts con-
ditioned on input question-image pair representations for several
reasons. Firstly, by leveraging pretrained VLMs, the input repre-
sentations provide sufficient context-aware information. Secondly,
these representations can be used to retrieve prompts that are most
relevant to the current sample. Bias from those irrelevant seen an-
swers would be diminished due to decreased correlations between
the instance-level prompts and the irrelevant seen answers.

Self-PT uses a straightforwardmodule called adaptive self-prompt
embedding to construct instance-level context-aware prompts. As
depicted in Fig. 2, given the input question-image pair, we extract
the [CLS] token 2 as the global multimodal representation denoted
by 𝑥 . Adaptive self-prompt embedding employs ℓ prompt encoders
to get ℓ context-aware prompt tokens. Specifically, prompts with
length ℓ can be formulated as:

𝑃𝑥 =𝑊up · 𝛿 (𝑊down · 𝑥) (5)

where 𝑃𝑥 ∈ R𝑑×ℓ ,𝑊up ∈ R𝑑𝑚𝑖𝑑×𝑑×ℓ and𝑊down ∈ R𝑑×𝑑𝑚𝑖𝑑 rep-
resent the up- and down-projection in prompt encoder, 𝑑 denotes
the dimension size of VLMs, 𝑑𝑚𝑖𝑑 denotes the middle size of the
prompt encoder, 𝛿 (·) is the non-linear activation,𝑊down is shared
to embed the global multimodal representation 𝑥 for each prompt.
The prompt encoders are constructed like a feed-forward layer and
the𝑊down and𝑊up serve as a set of key-value memory tokens
[7, 12]. Therefore, the prompt embeddings can be adjusted adap-
tively according to their relevance to the global representation 𝑥 ,
enabling better adaptation of VLM to low-resource VQA.

2In the decoder, we use the start token [s]. In addition, the global multimodal repre-
sentations can also be obtained by avg/max pooling, which would be discussed in the
experiment section.

Moreover, since the generated prompts are conditioned on the
input global representation 𝑥 , we utilize the key and value projec-
tions in the frozen VLM to obtain key and value prompts, instead
of generating them separately:

𝑃𝑘𝑥 =𝑊 ∗
𝑘
· 𝑃𝑥 , 𝑃𝑣𝑥 =𝑊 ∗

𝑣 · 𝑃𝑥 (6)

where the𝑊 ∗
𝑘
and𝑊 ∗

𝑣 are frozen key and value projections. Lever-
aging the key and value projections in frozen VLMs can further
utilize the existing knowledge in the pre-training models and no
more need to learn the mapping from prompt embedding space to
the key and value representation spaces.

By substituting 𝑃𝑘𝑥 and 𝑃𝑣𝑥 from Eq. (6) into Eq. (3), we get:

𝑥ℎ =(1 − _(𝑥, 𝑃𝑘𝑥 ))Attn(𝑥𝑊𝑞,𝐶𝑊𝑘 ,𝐶𝑊𝑣)

+ _(𝑥, 𝑃𝑘𝑥 )Attn(𝑥𝑊𝑞, 𝑃
𝑘
𝑥 , 𝑃

𝑣
𝑥 )

(7)

Due to decreased correlations between current questions and those
irrelevant seen answers, bias to those irrelevant seen answers is
diminished. Therefore, 𝑃𝑘𝑥 and 𝑃𝑣𝑥 are prompts that are appropriate
to instruct each sample. They let the second item of Eq. (7) provide
appropriate instructions to VLMs instead of misleading them, thus
mitigating overfitting to seen answers. Moreover, adaptive self-
prompt embedding further obtains implicit information from the
relative relationship between different types of questions, which
enables better utilization of the prompt embedding capacity.

3.3 Parameter-Efficient Self-PT
The adaptive self-prompt embedding in Self-PT can solve the over-
fitting issue, but brings the following problems: 1) the parameters in
adaptive self-prompt embedding are linearly related to the number
of prompt tokens, which is not flexible to generate prompts with
any length. 2) adaptive self-prompt embedding needs large numbers
of parameters to generate instance-level context-aware prompts.
Therefore, we use hyper-networks 𝐹𝐻 (·) and low-rank parameter
factorization 𝐹𝐿 (·) to make Self-PT flexible and parameter-efficient.
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Hyper-Network for Prompt Embedding. The general idea of
hyper-networks [10, 12, 52] is to learn a parametric task-specific
hyper-embedding for each task. The hyper-embedding is fed to a
hyper-network which generates task-specific parameters for other
networks. Different from existing methods, we focus on decoupling
the number of parameters for prompt embedding and the prompt
length ℓ while capturing the shared knowledge across prompt to-
kens.

In Eq. (5), the number of parameters in𝑊up is directly related
to the prompt length ℓ . Specifically, it scales linearly with prompt
length ℓ as O(𝑑 ·𝑑𝑚𝑖𝑑 · ℓ), which is not as flexible as general prompt
tuning methods [24, 25]. Hence, to achieve higher flexibility and
parameter efficiency, we employ hyper-networks to generate pa-
rameters for𝑊up. We introduce a set of embeddings {𝑒𝑖 }ℓ𝑖=1 and
a weight bank {𝑊 𝑖

𝐵
}ℓB
𝑖=1 to construct the hyper-network, where

𝑒𝑖 ∈ R𝑑𝑒 only specifies the prompt index, the dimension 𝑑𝑒 ≪ 𝑑 ,
and𝑊 𝑖

𝐵
∈ R𝑑mid×𝑑 including ℓB trainable weights. Hence, if we con-

sider𝑊up as ℓ numbers of prompt encoder {𝑊 𝑖
up}ℓ𝑖=1, the prompt

index information can be used to generate weights, i.e., Linear
Weights in Fig. 2, specific for the corresponding prompt encoder:

𝑊 𝑖
up =

ℓ𝐵∑︁
𝑗=1

LN(𝑊𝑒 · 𝑒𝑖 ) ·𝑊 𝑗

𝐵
+𝑊 0

𝐵
(8)

where𝑊𝑒 ∈ R𝑑𝑒×ℓin is a lightweight mapping, LN(·) is layer nor-
malization, 𝑊 0

𝐵
is an additional shared weight. Hence, for any

prompt length ℓ , Self-PT decouples the number of the parameters
for prompt embedding as O(𝑑 · 𝑑𝑚𝑖𝑑 · ℓB), in which the number of
the parameters is directly related to the predefined width of weight
bank ℓB instead of prompt length ℓ . Moreover, hyper-network en-
ables knowledge sharing across prompt tokens in each layer while
maintaining a low parameter cost during the end-to-end training.

Low-Rank Parameter Factorization. We employ low-rank
parameter factorization to reparameterize the weight of each linear
layer in Self-PT with much fewer parameters while maintaining
the performance. The parameterized hypercomplex multiplication
(PHM) layers [49] are first used to construct a parameter-efficient
transformer. Recent studies [17, 19] show the effectiveness of the
PHM layer in adapter-based parameter-efficient tuning. We further
explore the low-rank parameter factorization method in prompt
tuning for better parameter efficiency. In Eq. (8) and Eq. (6), the
𝑊down ∈ R𝑑×𝑑𝑚𝑖𝑑 and the weights in the weight bank {𝑊 𝑖

𝐵
}ℓB
𝑖=0 ∈

R𝑑𝑚𝑖𝑑×𝑑 are firstly decomposed in the low-dimensional matrices
by the Kronecker products like PHM layer:

𝑊down =

𝑛∑︁
𝑗=1

𝑆
𝑗

down ⊗ 𝑇 𝑗

down,𝑊
𝑖
𝐵 =

𝑛∑︁
𝑗=1

𝑆
𝑖 𝑗

𝐵
⊗ 𝑇 𝑖 𝑗

𝐵
(9)

where 𝑆 𝑗down, 𝑆
𝑖 𝑗

𝐵
∈ R𝑛×𝑛 , 𝑇 𝑗

down ∈ R
𝑑
𝑛
× 𝑑mid

𝑛 , 𝑇 𝑖 𝑗
𝐵

∈ R
𝑑mid
𝑛

× 𝑑
𝑛 . The

⊗ indicates the Kronecker product, which is a special outer product
between matrices. For example, given 𝑆 ∈ R𝑚×𝑘 and 𝑇 ∈ R𝑝×𝑞 ,
𝑆 ⊗ 𝑇 ∈ R𝑚𝑝×𝑘𝑞 is a block matrix as follows:

𝑆 ⊗ 𝑇 =


𝑠11𝑇 𝑠12𝑇 · · · 𝑠1𝑘𝑇
𝑠21𝑇 𝑠22𝑇 · · · 𝑠2𝑘𝑇
.
.
.

.

.

.
. . .

.

.

.

𝑠𝑚1𝑇 𝑠𝑚2𝑇 · · · 𝑠𝑚𝑘𝑇


(10)

To bemore parameter-efficient, the matrix𝑇 𝑗

down and𝑇 𝑖 𝑗
𝐵

are further
factorized into two low-rank matrices by:

𝑇
𝑗

down = 𝑀
𝑗

down · (𝑁 𝑗

down)
𝑇 ,𝑇

𝑖 𝑗

𝐵
= 𝑀

𝑖 𝑗

𝐵
· (𝑁 𝑖 𝑗

𝐵
)𝑇 (11)

where 𝑀 𝑗

down ∈ R
𝑑
𝑛
×𝑟 , 𝑁 𝑗

down ∈ R
𝑑mid
𝑛

×𝑟 , 𝑀𝑖 𝑗

𝐵
∈ R

𝑑mid
𝑛

×𝑟 , 𝑁 𝑖 𝑗

𝐵
∈

R
𝑑
𝑛
×𝑟 , 𝑟 is the predefined rank of these matrices. Finally,𝑊down

and𝑊 𝑖
𝐵
can be reparameterized by:

𝑊down =

𝑛∑︁
𝑗=1

𝑆
𝑗

down ⊗
(
𝑀

𝑗

down · (𝑁 𝑗

down)
𝑇
)
,

𝑊 𝑖
𝐵 =

𝑛∑︁
𝑗=1

𝑆
𝑖 𝑗

𝐵
⊗
(
𝑀

𝑖 𝑗

𝐵
· (𝑁 𝑖 𝑗

𝐵
)𝑇
) (12)

After low-rank parameter factorization, parameters of each weight
𝑊 in Self-PT, i.e.,𝑊down and𝑊 𝑖

𝐵
, is reduced from the original𝑑 ·𝑑mid

to 𝑟
𝑛 (𝑑 + 𝑑mid) + 𝑛3. With the mild condition that the rank 𝑟 ≪ 𝑑

and 𝑑mid, it can reduce the parameters to 𝑟/𝑛𝑑mid compared with
the original numbers of parameters at most.

In addition to reducing the parameters of each weight 𝑊 in
Self-PT, low-rank parameter factorization is also used to reduce
the parameters of the adapter. To adapt feed-forward layer for low-
resource VQA, we also employ adapters [13, 19] that are added
after the feed-forward layer in VLMs. As depicted in Fig. 2, the
adapter layer consists of a down-projection𝑊AD ∈ R𝑑×𝑑𝑚𝑖𝑑 and an
up-projection𝑊AU ∈ R𝑑𝑚𝑖𝑑×𝑑 , where 𝑑 is the input dimension and
𝑑𝑚𝑖𝑑 is the bottleneck dimension for the adapter layer, for input 𝑥 ,
adapter layer can be defined as:

𝑥ℎ = 𝑥 +𝑊AU · 𝛿 (𝑊AD · 𝑥) (13)

The same as Self-PT, we reparameterize the𝑊AD and𝑊AU by low-
rank parameter factorization similar to Eq. (12) to reduce the num-
ber of parameters in adapters while maintaining the performance.

4 EXPERIMENT
4.1 Experimental Setup
Datasets and Evaluation Metrics. Our experimental evaluation
involves three widely used datasets in the field of visual question
answering (VQA): VQA v2 [8], GQA [15], and OK-VQA [30]. We
follow the approach of Chen et al. [3] and consider training data
sizes, denoted as 𝑁D , smaller than 1,000. To achieve a more prac-
tical low-resource learning scenario, we adopt the true few-shot
learning analysis [6, 31] and use the development set Ddev of the
same size as the training set Dtrain (i.e., |Dtrain | = |Ddev | = 𝑁D ),
instead of a large-scale validation set, for best model selection and
hyper-parameter tuning. Following recent study [17], our experi-
ments cover 𝑁D values of 16, 32, 64, 100, 500, and 1,000. To create
the Dtrain and Ddev sets for these three datasets, we randomly
sample 2𝑁D samples from its training set and divide them equally
betweenDtrain andDdev. The accuracy of low-resource VQA tasks
is measured using the VQA-Score metric [1].

Implementation details. We implement all methods using
PyTorch on an NVIDIA Tesla V100 GPU. we utilize the pretrained
VLM, i.e., VL-T5 [4], as our baseline for low-resource VQA. We
consider VQA as a generation task for parameter-efficient tuning
and do not introduce additional parameters from VQA heads. We
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Dataset Method #Param #Sample
(M) (%) 16-shot 32-shot 64-shot 100-shot 500-shot 1,000-shot

VQA v2 [8]

Finetuning 224.54 100% 41.82±1.58 43.09±3.10 46.87±0.57 48.12±0.87 53.46±0.41 55.56±0.13
BitFit [47] 0.29 0.13% 40.61±4.15 43.86±2.19 46.14±1.00 47.53±0.67 51.91±0.40 53.18±0.58
LoRA [14] 0.44 0.20% 41.60±2.27 42.62±2.41 45.36±1.66 47.57±0.91 51.93±0.38 54.15±0.45
Compacter [19] 0.34 0.15% 39.28±1.87 42.47±2.76 44.91±1.27 46.28±1.37 51.21±0.90 53.39±0.54
Houlsby [13] 4.76 2.12% 41.71±2.16 44.01±2.09 45.11±1.40 47.71±0.78 52.27±1.05 54.31±0.34
Pfeiffer [32] 2.38 1.06% 41.48±1.86 44.18±2.13 45.93±1.11 47.42±1.15 52.35±0.52 53.98±0.38
AdaMix [42] 5.92 2.64% 40.59±2.05 43.42±2.08 46.70±1.32 47.34±0.91 51.72±1.05 54.12±0.63
MixPHM [17] 0.87 0.39% 43.13±1.78 45.97±2.01 48.26±0.56 49.91±0.76 54.30±0.33 56.11±0.40
Self-PT 1.08 0.48% 49.21±2.21 49.77±2.44 50.31±0.84 50.76±0.78 54.30±0.44 56.25±0.34

GQA [15]

Finetuning 224.54 100% 28.24±2.08 30.80±2.49 34.22±0.59 36.15±0.99 41.49±0.54 43.04±0.57
BitFit [47] 0.29 0.13% 26.13±2.83 29.00±4.81 34.25±1.16 35.91±1.22 40.08±0.42 41.84±0.15
LoRA [14] 0.44 0.20% 26.89±2.74 30.40±2.27 34.40±0.99 36.14±1.10 40.20±1.02 42.06±1.12
Compacter [19] 0.34 0.15% 23.70±2.10 27.18±2.61 32.70±1.30 35.28±1.45 38.68±0.50 41.17±0.95
Houlsby [13] 4.76 2.12% 25.13±2.32 28.34±1.17 33.23±0.94 35.88±1.79 40.85±0.48 41.90±0.72
Pfeiffer [32] 2.38 1.06% 25.08±1.81 29.18±1.32 32.97±0.84 35.08±1.01 40.30±0.40 41.39±0.27
AdaMix [42] 5.92 2.64% 24.62±2.34 28.01±1.33 32.74±0.96 35.64±0.94 40.14±0.42 41.97±0.86
MixPHM [17] 0.87 0.39% 28.33±2.63 32.40±2.52 36.75±0.55 37.40±0.87 41.92±0.55 43.81±0.50
Self-PT 1.08 0.48% 34.72±2.13 35.62±2.32 36.27±0.80 37.77±1.17 41.96±0.55 43.45±0.53

OK-VQA [30]

Finetuning 224.54 100% 11.66±2.08 14.20±0.78 16.65±1.02 18.28±0.67 24.07±0.40 26.66±0.72
BitFit [47] 0.29 0.13% 11.29±1.79 13.66±1.49 15.29±0.57 16.51±0.53 22.54±0.57 24.80±0.63
LoRA [14] 0.44 0.20% 10.26±1.53 12.46±1.82 15.95±0.38 17.03±0.82 23.02±0.41 25.26±0.53
Compacter [19] 0.34 0.15% 9.64±2.73 11.04±1.39 13.57±1.07 15.92±1.18 22.20±0.89 24.52±0.59
Houlsby [13] 4.76 2.12% 9.79±1.71 12.25±2.13 15.04±1.25 16.58±0.65 22.67±0.77 25.04±0.44
Pfeiffer [32] 2.38 1.06% 9.06±0.53 11.39±0.79 14.23±1.54 16.34±0.79 22.90±1.03 26.70±0.71
AdaMix [42] 5.92 2.64% 8.39±1.20 11.55±1.37 13.66±2.29 16.27±0.92 23.20±0.78 26.34±0.88
MixPHM [17] 0.87 0.39% 13.87±2.39 16.03±1.23 18.58±1.42 20.16±0.97 26.08±0.88 28.53±0.85
Self-PT 1.08 0.48% 19.67±2.41 20.43±0.71 21.52±0.82 23.08±1.16 26.41±0.31 29.54±0.57

Table 1: Performance comparison on low-resource VQAwith pretrained VL-T5. The average VQA-Scores with standard deviation
across 5 seeds are evaluated on VQA v2 validation set, GQA test-dev, and OK-VQA test set. The best and second best parameter-
efficient tuning methods are highlighted.

Method #Param Dataset
Total Tuned VQAv2 GQA OK-VQA

Frozen [39] 7B - 38.2 12.6 -
PICa-Base [46] 175B - 54.3 - 43.3
PICa-Full [46] 175B - 56.1 - 48.0

VL-T5no-vqa[4] 224M 100% 31.8 19.6 12.7
FewVLM [18] 224M 100% 48.2 32.2 15.0
MixPHM [17] 225M 0.39% 43.13 28.33 13.87
Self-PT 225M 0.48% 49.21 34.72 19.67

Table 2: Comparison with the few-shot methods on VQA v2.
All methods are tested on 5 different seeds with 16 randomly
selected samples for each seed.

use the weights released by FewVLM [18], which re-trained VL-T5
without the overlapping samples. All reported results are averaged
over five seeds {13, 21, 42, 87, 100}. The learning rate is set to 1𝑒-
4. The batch size and number of epochs are set to 16 and 400,
respectively. For optimization, we employ the AdamW optimizer
[27] and an early stopping strategy with the patience of 200 non-
increasing epochs, where the stopping metric is the VQA-Score on
development set Ddev for each dataset. We added the adapters to
adapt feed-forward layer for low-resource VQA which performs
similarly to the compactor [19] with 0.16% tunable parameters.

4.2 Comparative Evaluation
We conduct several experiments to show the effectiveness of Self-
PT, including the comparative experiments with finetuning and
several state-of-the-art parameter-efficient tuning methods, the
comparative experiments with SOTA few-shot methods, and the
comparative experiments under the setting of domain adaptation.

Comparison with Parameter-Efficient Tuning Methods.
We compare our Self-PT with finetuning and several state-of-the-
art parameter-efficient tuning methods. Specifically, we compare
Self-PT with Houlsby [13], Compacter [19], Pfeiffer [32], AdaMix
[42], MixPHM [17], LoRA [14], and BitFit [47]. Note that these
methods are all re-implemented by [17] which performs hyper-
parameter search on their key hyper-parameters and reports their
best performance.

Table 1 shows the results with pretrained VL-T5 [4] on three
datasets. Overall, our Self-PT outperforms state-of-the-art parameter-
efficient tuning methods and also consistently outperforms full
finetuning. Specifically, Self-PT achieves the best performance in
VQA v2 and OK-VQA datasets and improves most of the evaluation
metrics in the GQA dataset. The margins between Self-PT and the
current SOTA method, i.e., MixPHM, in the rest two metrics are
not large. However, it is important to note that Self-PT markedly
outperforms MixPHM when the seen sample is extremely scarce.
For example, Self-PT shows more than 6% average improvements
in three datasets when D is 16. We attribute the performance im-
provement to the proposed Self-PT, as it dynamically learns context-
aware prompts with markedly fewer tunable parameters, making
it more efficient and effective for low-resource VQA.

Comparison with SOTA Few-Shot Methods. Table 2 presents
a comparison of SOTA multimodal few-shot methods in VQA.
Specifically, few-shot VQA is a special case of low-resource VQA.
Two in-context learning methods, Frozen [39] and PICa [46], lever-
age prompt-tuning to transfer large language models such as GPT-3
[2] without tuning parameters. VL-T5no-vqa[4] and FewVLM [18]
are full finetuning methods, while FewVLM additionally inserts
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Figure 3: Visualization results on VQA v2 validation set with 𝑁D in 16, 32, and 64, respectively. We show the performance of
general prompt tuning method (red) and Self-PT (blue) in ten random types of questions. Numbers in (·) are the times this
question type occurred in the training sets.

Method #Tunable VQAv2 GQA OK-VQA

Finetuning 224.54M 41.82±1.58 28.24±2.08 11.66±2.08
BitFit [47] 0.13% 40.61±4.15 26.13±2.83 11.29±1.79
LoRA [14] 0.20% 41.60±2.27 26.89±2.74 10.26±1.53
Compacter [19] 0.15% 39.28±1.87 23.70±2.10 9.64±2.73
Houlsby [13] 2.12% 41.71±2.16 25.13±2.32 9.79±1.71
Pfeiffer [32] 1.06% 41.48±1.86 25.08±1.81 9.06±0.53
AdaMix [42] 2.64% 40.59±2.05 24.62±2.34 8.39±1.20
MixPHM [17] 0.39% 43.13±1.78 28.33±2.63 13.87±2.39
Self-PT 0.48% 49.21±2.21 34.72±2.13 19.67±2.41
Self-PTVQA 0.48% 49.21±2.21 31.98±2.21 16.14±2.32

Table 3: Domain adaptation ability across datasets. Self-PTVQA
is trained and saves the best epoch on the VQA v2 training
set and validation set, respectively. Then, we directly test
Self-PTVQA on the GQA and OK-VQA datasets.

hand-crafted prompts into model inputs. MixPHM [17] is the cur-
rent state-of-the-art parameter-efficient tuning method.

Results in Table 2 demonstrate that except Frozen and PICa
which employ additional pretrained prompt encoders and such
large-size pretrained models, Self-PT achieves better results than
both prompt-based finetuning and parameter-efficient tuning meth-
ods. Specifically, Self-PT shows 2.72% average improvements in
three datasets compared with the prompt-based finetuning method,
and 6.09% average improvements compared with SOTA parame-
ter efficient tuning method. This demonstrates the superiority of
Self-PT in terms of performance and parameter efficiency.

Comparison Under Domain Adaptation Setting.We test the
domain adaptation ability of Self-PT across datasets with 𝑁D = 16.
The results of Self-PTVQA in Table 3 show that Self-PT can general-
ize well across datasets. Specifically, Self-PT trained on the VQA
dataset outperforms finetuning and the SOTA parameter-efficient
tuning method, i.e., MixPHM on GQA and OK-VQA by 3.65% and
2.27%, respectively. This demonstrates the strong generalization
ability of Self-PT.

4.3 Ablation Studies
If not specifically mentioned, We conduct ablated experiments with
pretrained VL-T5 on VQA v2, GQA, and OK-VQA with Dtrain =

Ddev = 16.
Effectiveness of Each Component.We ablate the three key

components in Self-PT: adaptive prompt encoder (A), hyper-network
(FH ), and low-rank parameter factorization (FL ). The results are
shown in Table 4. We implement the general prompt tuning method
(the first row) using an embedding layer as well as an MLP with the

A FH FL
#Tunable Dataset
Param VQAv2 GQA OK-VQA

Finetuning 224.54M 41.82±1.58 28.24±2.08 11.66±2.08
2.11% 39.69±2.78 24.71±1.81 10.73±1.57

✓ 6.10% 46.44±2.17 31.54±2.05 15.54±2.52
✓ ✓ 4.19% 47.79±2.27 34.24±2.10 17.84±1.82
✓ ✓ 0.64% 47.64±2.32 33.11±2.41 17.25±2.73
✓ ✓ ✓ 0.48% 49.21±2.21 34.72±2.13 19.67±2.41

Table 4: Ablation studies on each component. A: adaptive
prompt encoder, FH : hyper-networks, FL : low-rank param-
eter factorization.

same middle dimension as that in adaptive self-prompt embedding
module. Results in the first row and the second row demonstrate
that constructing instance-level context-aware prompts shows great
improvements compared with the general prompt tuning method,
i.e., 6.16% average improvements in three datasets. Results in rows
2-4 show that hyper-network and low-rank parameter factorization
achieve about 1.5x and 9x reduction in the number of parameters
respectively and both get better performance. This demonstrates
that hyper-network and low-rank parameter factorization highly
reduce parameters while maintaining model capacity.

Generalization Analysis. To evaluate the generalization ability
of Self-PT to different question types, we visualize the performance
of various types of unseen questions in Fig. 3, which usually require
unseen answers. Specifically, for the question types that occur
more than 3 times, Self-PT consistently outperforms the general
prompt tuning method. For the question types that occur less than
2 times and those unseen types of questions, Self-PT outperforms
the general prompt tuning method by a large margin, especially in
lower-resource settings, i.e., 𝑁D in 16 and 32. This shows that its
generalization ability is stronger than the general prompt tuning
method.

Prompt Length Analysis. To study the effects of the prompt
length on low-resource VQA, we evaluate Self-PT performance
with a prompt length selected from { 2, 5, 10, 15, 20, 30, 60, 100 }. As
shown in Fig 4, when the prompt lengths are less than 10, increasing
prompt lengths can usually bring performance improvements in
Self-PT (expect 𝑁D = 16 in VQA v2 dataset). This phenomenon of
improvements cannot extend to all scenarios, the increase might
meet saturation when the prompt length is more than 10. We advise
that the length of 5 tokens can achieve better performance on
average in different datasets and different settings.
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Enc Dec VQAv2 GQA OK-VQA

✓ 49.58±1.81 34.68±2.52 18.58±2.19
✓ 48.52±2.76 33.11±2.08 17.64±1.87

✓ ✓ 49.21±2.21 34.72±2.13 19.67±2.41

Table 5: Evaluation of different prompt insertion methods.
We specifically evaluate Self-PT inserted to the encoder, to
the decoder only, or both the encoder and decoder.

Condition VQAv2 GQA OK-VQA

w/ mean 49.21±1.71 34.69±2.08 19.55±2.19
w/ max 49.08±2.43 34.50±2.34 19.41±2.24
w/ [cls] 49.21±2.21 34.72±2.13 19.67±2.41

Table 6: Evaluation of different input conditions for Self-PT.
We evaluate three variants of conditions: average pooling
(mean), max pooling (max), and directly using the [cls] token.

0 20 40 60 80 100
Prompt Length

40

42

44

46

48

50

52

V
Q

A
 a

cc
ur

ac
y 

(%
)

VQA
GQA

0 20 40 60 80 100
Prompt Length

40

42

44

46

48

50

52

V
Q

A
 a

cc
ur

ac
y 

(%
)

VQA
GQA

32

34

36

38

40

42

44

G
Q

A
 a

cc
ur

ac
y 

(%
)

32

34

36

38

40

42

44

G
Q

A
 a

cc
ur

ac
y 

(%
)

Figure 4: Analysis of prompt lengths on VQA v2 and GQA
dataset when 𝑁D is 16 (left) and 64 (right).

Prompt Depth Analysis.We evaluate the performance of in-
serting prompts to the encoder, to the decoder only, or to both
the encoder and decoder. Experimental results are demonstrated
in Table 5. We find that it is better to insert prompts into every
layer of the whole VLM. In the comparison between insertion to the
encoder only and to the decoder only, we observe that the former
solution leads to better results. This is because the prompts instruct
multimodal information fusion indirectly in the decoder.

Prompt Condition Analysis. We analyze the input conditions
of Self-PT to generate context-aware prompts. Since the decoder
acts in an auto-regressive manner and is hard to change the con-
ditions for Self-PT, We evaluate three variants of conditions for
Self-PT in the encoder layer: average or max pooling of all input
tokens and directly using the [cls] token. Experimental results in
Table 6 demonstrate that Self-PT can leverage various forms of
global multimodal representations to achieve stable performance.
It is mainly because of the strong prompt embedding capacity of
Self-PT to generate proper prompts.

Hyper-Parameter Analysis. To investigate the impact of differ-
ent hyper-parameters on Self-PT, we conduct experiments by vary-
ing ℓin, 𝑑mid, 𝑟 , and 𝑛. More specifically, we consider the following
settings: ℓin ∈ {1, 2, 5, 10}, 𝑑mid ∈ {96, 128, 192, 384}, 𝑟 ∈ {2, 4, 8, 16},
and 𝑛 ∈ {2, 4, 8}. The results in Table 7 show that changing these
hyper-parameters has a slight impact on the performance of Self-
PT. This suggests that Self-PT does not significantly depend on the
hyper-parameter selection. We finally choose ℓin = 2, 𝑑mid = 128,
𝑟 = 8, and 𝑛 = 4 for better performance and parameter efficiency.

Hyperparam #Tunable VQAv2 GQA OK-VQA

Finetuning 224.54M 41.82±1.58 28.24±2.08 11.66±2.08

ℓB

1 0.4% 49.68±2.07 34.24±2.42 18.55±2.65
2 0.48% 49.21±2.21 34.72±2.13 19.67±2.41
5 0.74% 48.62±1.93 33.53±1.74 17.68±2.11
10 1.16% 48.40±2.23 32.33±2.16 18.90±2.24

𝑑mid

384 0.57% 49.09±2.28 34.24±2.17 17.87±2.36
192 0.50% 49.04±2.15 32.49±2.22 19.59±2.55
128 0.48% 49.21±2.21 34.72±2.13 19.67±2.41
96 0.47% 48.96±2.20 33.50±2.19 19.58±2.32

𝑟

2 0.25% 49.17±2.35 34.59±2.40 17.46±2.43
4 0.33% 49.25±2.18 34.96±2.43 17.28±2.38
8 0.48% 49.21±2.21 34.72±2.13 19.67±2.41
16 0.78% 49.16±2.02 34.54±2.23 19.70±2.21

𝑛

2 0.47% 48.52±2.17 32.95±2.02 16.38±2.73
4 0.48% 49.21±2.21 34.72±2.13 19.67±2.41
8 0.50% 49.46±2.05 33.94±2.32 18.76±2.40

Table 7: Hyper-Parameter Analysis. ℓB: width of weight bank,
𝑑mid: bottleneck dimension, 𝑟 : rank of parameter factoriza-
tion and 𝑛: the number of summations of Kronecker product.

4.4 Discussions and Limitations
Self-PT shows superiority in performance and generalization abil-
ity with few tunable parameters, although there exist limitations
in sharing information across layers and generalizing it to more
vision-language tasks. Some recent works [12, 17, 52] have shown
that sharing parameters between layers can improve performance
and parameter efficiency. We suppose that the prompt index em-
bedding and the adaptive prompt encoder can benefit from sharing
parameters for each layer. Besides, Self-PT currently serves for
visual question answering tasks only, which is not explored in a
multi-tasking learning scenario. In the future, we plan to expand
our exploration to 1) knowledge sharing between layers and 2)
adapt Self-PT to more V&L tasks.

5 CONCLUSION
In this paper, we propose a prompt tuning method for low-resource
VQA named Adaptive Self-Prompt Tuning (Self-PT). Specifically,
Self-PT utilizes instance-level multimodal representations as condi-
tions to obtain context-aware prompts, avoiding implicit correla-
tions between static prompts and seen answers. Moreover, we use
hyper-networks and low-rank parameter factorization to reduce
the trainable parameters of Self-PT while maintaining the prompt
embedding capacity. Experiments conducted on VQA v2, GQA, and
OK-VQA with different low-resource settings show that our Self-
PT outperforms the state-of-the-art parameter-efficient methods,
especially in lower-shot settings, e.g., 6% average improvements
cross three datasets in 16-shot.
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